Shark: Spy Honeypot with Advanced Redirection Kit

lon Alberdi Eric Alata Philippe Owezarski Vincent Nicomette MohamedaKizhe
LAAS-CNRS
7 avenue du Colonel Roche - 31077 Toulouse Cedex 4
{ialberdi,ealata,owe,nicomett,kaani¢i@laas.fr

Abstract of naming service for a long duratibnMore generally,
[10] counted the occurrence of at least 12,000 Denial of

Botnets represent a big threat for the Quality of Internet Service (DoS) attacks against 5,000 different hosts during
Services, as they are the source of many malicious activ-2 thrée weeks period in 2001. According to statistics
ities (DoS attacks, Spam, secret violation, etc). Our work réported in [13], from January to June 2006 an average
focuses on trying to detect, observe and disable botnetsf 66,000 active bots launching 6,110 DoS attacks per day
by infiltrating them. For this purpose, this study focuses Was observerd. This study, as well as [5], also points out
on discovering the behavior of malware which drives the the role of some machines (also called bots or zombies)
bots. The paper presents the design of an experimentalcormpted by blackhats in this new kind of threat. It appears
platform which takes advantage of the honeypot technologythat some blgckhats are cont.rqlllng several.thousands of
for downloading malware, and especially, serves as an Machines which can be used jointly for sending DDoS at-
infrastructure allowing the observation and the analysiis o tacks. Corrupting new machines is then of high importance
the collected malware behaviors, which is the contribution for blackhats to gain more power. If such activity is so
of this paper. For this purpose, we are designing SHARK, ywdespread, itis probab_ly because botnet renting, for_-send
a Spy Honeypot with Advanced Redirection Kit. The redi- INd Spam or DDoS for instance, can be a very profitable
rection kit aims at coping with some liability constraints 2ctivity. [9] evaluated that botnet owners have made more
which forbid one to send out malicious traffic which could Profit than the whole antivirus software industry in 2005.
pollute or corrupt any other machines. This paper presents In addition, cqrruptlng a Slgnlflcant numbgr of mgch|nes,
first results on the gathered malware observation and Can bé sometimes as feasible as corrupting a single one.
analysis, and some conclusions on botnet behaviors, thudVowadays, the uniformity of software binaries installed

demonstrating the interest and pertinence of this platform ©n @ large number of interconnected computers produces
a dramatic weakness. Indeed, a bug on such software that

can lead to arbitrary code execution, is exploitable on all
the instances of this software, and therefore, on all the
reachable computers on which this software is installed.
The threats that such botnets represent against the Qual-
ity of Internet Services have to be addressed and ideally
removed. Thus, protecting networks against DDoS attacks
is one of the strategic problems to be solved. Up to now,
Since the Internet is becoming a multi-services network usual protection approaches rely on the use of Intrusion
for different kinds of applications and media with differ- Detection Systems (IDS). The drawback with such IDS is
ent requirements, Distributed Denial of Service Attacks their postactive or reactive nature. They can work only
(DDoS) introduce a threat of significant importance. These when attacks occur [14]. Complementary solutions for
kinds of attacks are very frequent. The most famous protecting networks against botnets and DDoS attacks must
example of DDoS attack is 5Bcertainly the one launched be as proactive as possible, i.e., annihilate these threats
on October 17th 2002 against the 13 root DNS servers.
The attack managed to bring down 7 of them. A significant 1A similar attack took place on February 6th 2007. Fortunaielyas
part of Internet hosts were then unable to take advantagenot as successful.

keywords: honeypots, botnet, malware, worms.

l..Introduction

as soon as possible. The ideal solution would consist in

developing software applications without exploitable bug
or at least making people apply corrective patches fre-

qguently. Nevertheless, past experiences demonstratéd tha
those considerations are not realistic. Because of current

Internet users habits that result in:

« widely using the same operating system and software

binaries,

« heglecting the process of applying security patches,
we do think it would be utopian to try to fight against
botnet creation. Our work then focuses on trying to detect,
observe and disable botnets by infiltrating them. We then
expect to find a way for disabling DDoS attacks before

they occur (and then propose a new proactive defense
approach). This paper presents our first work towards this

long term research objective.
For this purpose, we propose to use monitoring tech-

the infected honeypot could cause to the Internet.
Indeed, even if LAN protection is guaranteed and
high rate DoS attacks cannot be launched from
the honeypot, potential malware can still propagate
through the Internet from this honeypot. Another
methodology presented in [5] aims at behaving as a
bot in order to infiltrate a botnet. For this purpose, it
starts by downloading the botnet malware, analyzes
it and extracts information on the C&C channel.
Then it emulates the bot behavior on the chahtel
gain information. It is of course less accurate than the
method described in [3] which proposes to interpret
malware commands. But on the other side, it allows
an automatic gathering of malware, and ensures not
to send out malicious traffic to the Internet.

Our study focuses on discovering the behavior of mal-

niques for observing and analyzing attacks, blackhats andvare which drives the bots [6]. The paper presents the

the spread of botnets. Possible monitoring techniques ca

fesign of an experimental platform which takes advantage

be classical network passive monitoring technologies, but©f the honeypot technology for downloading malware [2]
also, in the case of attacks, more specialized tools as @S Well, and this is the contribution of this paper, as

honeypots. In this context, three different techniques can
be distinguished for detecting botnets:

1) Observing the malicious traffic sent by bots (flood-
ings, spam, ...) with the aim of detecting botnets.
Up to our knowledge, nobody applied this method
yet. This seems still to be an unexplored way.
Observing theConmand & Conquer Channel ,
(C&C) which is the channel used by the blackhat to
control the machines he corrupted. Several projects
already applied this approach for the purpose of
detecting botnets [1], [8], [12]. Most of them analyze
Internet traffic and identify botnets by observing
non standard IRC commands, or by measuring the
reactivity of IRC clients (which helps to differentiate
humans from bots). However, these projects limit
their observations to a single kind of C&C channels,
i.e. unencrypted IRC. In addition, they assumed that
IRC traffic due to botnets is only generated on the
standard IRC port number, which is a significant lack
as described by [3] for example.

Capturing and analyzing the malware which corrupts
a machine and makes it a bot. Several proposals

2)

3)

have been made according to this approach. They

generally take advantage of low and high interaction
honeypots, jointly or not, depending on their objec-
tives [7]. For example, [3] proposes to install a high
interaction honeypot in a network, and protect this

an infrastructure allowing the observation and the anslysi
of the collected malware behaviors. For this purpose,
we introduce SHARK, a Spy Honeypot with Advanced
Redirection Kit. The redirection kit aims at coping with
some liability’ constraints, e.g., in France, that forbid
the honeypot owners to send out malicious traffic which
could pollute or corrupt any third-party machifiesAs

it is law enforced, SHARK works in a restrictive and
controlled environment. It interacts with other machines
but must control the traffic sent out, to avoid being suit.
This limitation is mitigated in SHARK by the redirection
kit which proposes both static and dynamic redirection
principles. Section Il presents the design of this platform
especially detailing the safe simulation environment, and
the redirection mechanisms. Section Il presents its imple
mentation. The section IV focuses on preliminary results
on the gathered malware observation and analysis, and
some conclusions on botnet behaviors, thus demonstrating
the interest and pertinence of this platform. Finally, sect

V concludes the paper by describing some limits of the
system which will be improved in future work. It also

depicts, using few examples, how these results could be
exploited for the design of a global proactive protection

system for the Internet.

2without simulating its other actions (like propagation atfgs). In

network from a possible propagation by limiting the other words, it only offers a partial level of interaction.

output bandwidth and filtering connection attempts
to the LAN. This system fully simulates a bot
behavior. But it presents major drawbacks, the main

3As far as we know, the law seems to be very similar in most of the

countries: USA, All western Europe countries, Japan, etc.

4The owner of a machine connected to the Internet is respeneibl

the traffic his machine generates... even the one that is séftecause

being its lack of protection against damages that of the blackhat (who has some control on the machine) requests.

Il..Design The execution of such malware may provoke non neg-
ligible modifications on the operating system and applica-
Our methodology aims at providing a particular runtime tions installed. Those modifications could have an impact
environment that allows the behavior of an attack to on the execution of any software running afterwards,
be simulated. That simulation environment must prevent and especially some other malware. Then we decided to
the malware from sending out malicious packets to the reinitialize the whole operating system once a malware has
Internet. This restriction could be discussed: why should been executed.
we prevent the malware from sending out packets to the As already explained, our runtime environment is built
Internet if the observation of these packets is fundamentalwith a full control on all communications initiated from
to understand the structure and behavior of botnets ? Theghe malware. Communications on the C&C channel do
French law is clear: this traffic is illegal, and therefore not provoke any particular degradation on any information
this work aims at obtaining information on botnets without System and thus do not present any risk from our point

making illegal actions. of view. We therefore decided to let the malware talk
Our environment has to face two main issues: through the real C&C channel when it is available, or try to
. How to obtain malware? simulate it otherwise On the other hand, malicious traf-
« How to design and implement such a restrictive fic, corresponding to DDOS or spam, represents obvious
runtime environment? threats and should therefore be simulated.
The last issue to cope with concerns the identification of
A.How to download malware? the different flows initiated from the malware. We adopted

an iterative approach by redirecting the information flows
One solution for collecting malware consists in volun- initiated by the malware towards a local machine under
tarily letting it infect a computer on which a honeypot is ©OUr control. This machine simulates the service requested

running. Two types of malware propagation techniques Canby these ﬂOWS. These information ﬂOWS are analyzed in

be distinguished according to the kind of vulnerabilities order to decide whether they can be sent to the Internet,

they exploit: redirected or blocked during the next execution of the
o Client side vulnerabilities. they target client soft- malware. . N . N L
ware and require a human interaction (such as click- 1) Static redirection:The static redirection consists in a

ing on an infected document attached to an email for set of rules controlling the rgdirection of some conne(sijon_
example). that cannot be changed during the same malware execution.
One of the most important statically redirected flows are
DNS flows. We chose to use our own DNS server and
redirect all the DNS requests from the malware to this
server. Thanks to that configuration, we can associate to
this DNS name the IP address of our choice:
« the real IP address associated to this DNS name, or
. a “fake” IP address, for example a computer in our
LAN.
To sum up, our system redirects traffic, first using the DNS

The second step of our methodology consists in run- protocol. The other redirection techniques arise at leSels
ning collected malware for observing and understanding@nd 4. For example, all tcp flows towards port 6667 are
their behavior. To keep control on such possible harmful "edirected to the IP ip1, port pl. _
executions, some parts of malware interactions have to be Thanks to these redirections, we can analyze the in-
simulated. The quality of simulations depends on the level teractions between the malware and computers it tries to
of interaction provided by the environment. By developing COnnect to. It then helps us to define the execution flow
their own IRC client to observe a botnet, [5] built a simu- Policy for this malware future executions.
lation environment with a lower interaction level than the ~ But static redirection presents serious drawbacks when
one that is expected if the malware is executed without anycOnsidering malware propagation attempts. Malware usu-
control. Nevertheless, even if executing malware without ally Uries to propagate by scanning Internet computers.
any control provides the best possible level of interaction Scanned addresses cannot be predicted as they can be
for observing them, such actions can also generate illegal@ndomly chosen, or dynamically designated by the botnet
malicious traffic. We then built our runtime environment administrator. Therefore with static redirections, we can
with the aim of making it as interactive as possible with SFor example, when the url is outdated or the server unreaghabi
respect to all legal constraints. the case of an IRC C&C channel.

« Server side vulnerabilities: they target server soft-
ware and do not require any human interaction.
nepent hes [2] is a tool for collecting malware that
exploits server side vulnerabilities. We have decided &b fir
analyze malware collected with this software.

B.How to build a restrictive and controlled
runtime environment?

only enforce redirections based on level 4 port parameter.one side of the connection. The other connection end is the
Then, all the scanning flows can be redirected either to onemachine that interacts with the honeypot. For all redidcte
computer, which would be unrealistic, or to none, which connections, we can observe an attacker at both connection
represents the lowest possible interaction level, ancether ends. On the previous example, the attacker is connected
fore provides little information on scanning impact. We from hostb to hostc and it is possible to observe him on
therefore implemented a dynamic redirection technique. both hostsh andc.

2) Dynamic redirection:We have designed and imple- Of course, this mechanism must be as reliable as
mented a selective mechanism which allows connectionspossible so that we can collect data really representative
from the honeypot towards Internet to be automatically and of the behavior of the attackers. Thus, the implementation
dynamically redirected. The goal is to make the attacker of this mechanism must have the following properties:

have the illusion that he can connect from the honeypotto , it must be adaptable according to the needs of the

the Internet whereas, in reality, the connections are simpl administrator.
redirected towards another honeypot. The originality of ou , it must be hidden as much as possible in such a way
method iS the dynam|C|ty Of th|S redireCtion meChanism. that the attacker cannot Suspect anything Strange'

« it must not increase in a visible way the latency of
the communications.

[1l.Implementation

To build our environment, we needed to implement
first the malware environment execution, and the static
redirection mechanism, and then the dynamic redirection.

A.Malware environment and static redirec-
tion

The large majority of interconnected computers use the
Windows XP operating system. We therefore chose to use
it to create the execution environment. In order to reihitia

Connection

----- Dropped connection

...... Redirected connection ize our operating system after each malware execution, we
— — Simulated connection chose to use the VmWare x86 architecture virtualization
software. This software makes possible to take a snapshot
Fig. 1. Example of redirection of the state of the virtualized uninfected computer and
figure go back to this state when necessary. Therefore, before

executing a malware, we only need to take a snapshot

Let us take the example presented in Figure 1. An of the uninfected opera_lting system and go back to this
attacker, from Internet host, breaks into honeypob snapshot before launching another execution.
(connection1). From this honeypot, the attacker then e chose the GNU/Linux operating system as host
tries to break into Internet host thanks to connection SYystem, essentially because of its firewaétfilter and
2. This connection is blocked by our mechanism. The Pecause the VmWare software supports it.
attacker then tries another connectidrtowards Internet The static redirection has been implemented thanks to
host f. This connection is accepted and automatically the Destination Netwo_rk Ad_dress Translatlon functiomalit
redirected towards honeypatThe attacker has the illusion ©ffered by the GNU/Linux firewalhetfilter. The selected
that his connection tof has succeeded whereas it has DNS server i$ind9 ncis used to capture the first payloads
been redirected to another honeypot. The attacker finallySent by a malware after a tcp handshake .
initiates another connection)(to Internet hosy from host
f. This connection is also accepted and redirected towardsB. Dynamic redirection
honeypotd.

This mechanism is interesting because it allows the The dynamic redirection mechanism has been imple-
activity of the attacker to be observed on the different mented in the Gnu/Linux operating system. Nevertheless,
hosts that he is supposed to control. In general, a honeypott has been designed in such a way that it can be easily
allows the activity of the attacker to be observed at only adapted to other systems.

As illustrated in figure 2 the mechanism includes three di al og_handl er, which decides if this packet has to

components: be redirected or blocked. This decision may be evaluated
. theredirection nodul e (inside the kernel) ex- according to different rules such as for example “a connec-
tracts packets. tion upon 10 or 100 is redirected, the others are blocked”
. thedi al og_handl er decides whether the extracted When the decision is taken, thdi al og_t racker in-
packets must be redirected or not. forms the kernel module through met!| i nk socket
. thedi al og_tracker is a link between the redirec- that the corresponding connection has to be tagged as
tion module and theli al og_handl er. “redirected” and the packet is re-injected into the next

The design of thedial og_handl er and the hook of the chain, which is our second hook. This second
hook is simply in charge of tagging the corresponding

particular difficulty. Hence, this paragraph only focuses o connection as “redirected”. The packet is then re-injected
the module implemented in the kernel. in the list of hooks of the corresponding chain. One of

The redirection module must extract packets in such athem is the hookat .dst which indeed redirects packets

way that they can be redirected or blocked. To do so, our©f connections tagged as “redirected”, by modifying the
module interacts with theet fi | t er component of the destination address of the packet (the destination address

kernel [11]. This component is a firewall which includes S changed to the address of one of our honeypots). So that

five chains. Each chain is used to intercept and possiblythis modification is correctly made, theat -dst hook
modify packets at different stages on their way through MUst b_e configured. This cpnflguranon is made through
the IP stack I(NPUT, OUTPUT, FORWARD, PREROUTI NG a rule inserted thanks to thiept abl es command. For
and POSTROUTI NG). A set of particular functions named example, the following rule configures this hook to redirect
hooks is associated to each chain. Each hook has al©® the machine 192.168.254.3 all packets of a connection
particular role and processes the packets that pass througfr99€ed as ‘redirected” with the taix 03FEA8CD:

the chain. For example, the hoalonnt rack updates jptables -t nat -A PREROUTI NG \

the state-machine of the connection corresponding to the -m connmark --mark OXO3FEA8CO -j \
processed packet. The hooks associated to a chain are DNAT --to-destinati on 192. 168. 254. 3
ordered by priority. Hence, in a chain, the hook with the _)
highest priority processes packets before all others amd th ~ 1here must be as manypt abl es rules as possible

hook with the lowest priority processes packets after all Fedirections, and as many redirections as different tags. |
others. this way, a tagged packet of a connection is redirected

In order to implement our redirection mechanism, we &ccording to the tag. o o ,
have developed two hooks and inserted them between the The.mechanlsr.n p'resented in this section is summarized
hookconnt r ack and the hookat _dst (which changes in the figure 2. This figure alsc_J presents the progress qf the
the destination address of a packet), in BREROUTI NG first packet of a new connection through our mechanism.
chain. Our first hook is in charge of extracting packets
and sending them to ttéi al og_t r acker in user space,
in order to decide whether they have to be redirected or
not, whereas our second hook is in charge of tagging the . >) X)
corresponding connections as “redirected” if the decision S system by describing a possible execution scenario.
to redirect them has been taken. We do not systematically"irst: all outgoing flows are blocked, except DNS requests
redirect all the connections initiated from the honeypot to that are redirected to our server. We launch the malware

Internet. Most of them are blocked and only a few of them execution (M1) and observe that a DNS request is sent
are redirected. to get the IP address of DNSName1 3Plet us assume

In fact, thanks to the hookonnt rack of netfilter DNSName1 exists Once the malware gets the IP1 address

(which associates a state-machine per pending connection)t S€nds a TCP SYN packet to the port p1 of IP1. We then
the redirection of a whole connection only requires the configure thestatic redirectionof the flow (flow 1 of figure _
redirection of the first packet of this connection (the 3) and relaunch the malware. Qur .computer (M2) W'l_l
other packets are automatically processed as the first one)?@ndshake the malware and receive first packets containing

Thus, for each connection, our first hook only extracts Payloads with:
. . . 6
the first papket and sends it to to al og-tracker®. "Definition of this decision process is part of future work.
Then, thedi al og_t r acker forwards the packet to the 8All flows generated by the malware are observed by a wireshark
(http://www. wi reshar k. or g) network sniffer.
SWe can recognize the first packet because the hooknt r ack 91f DNSNamel is outdated we change the configuration of our DNS

which is just before our first hook tags the first packet of ezmimection server so that he claims one of our computers to be associattisto
as NEW url, and relaunch the malware.

di al og_tracker is simple and does not reveal any

C.Deployed experimental set-up

The global system is depicted in figure 3. Let’s illustrate

C&C
dialog_handler dialog_handler /) ?altiha—r;:lle?\
/ 4 =
| pz e .
[= -~ -
_ / dialog_traclvi _ ~ Henizas
—— 2 simulation
-DNS " Identified
//Iibnetfilter__mje_u_e_ P s libnetfilter_conntrack ' C&C_channel 2 '*.\C&C flows
4 - @ _____ 1 \i". 2
/I User-space LF TTTmsimciaa A Trafic
_/ I - grn;s;ae; ______________ Flow identification, or = hijacking
3 service emulation
T Propagation .
/ // connlrfck ,-:er:Ic;Zﬁtllgn ’_n_al i S —at‘t-znrﬁ‘ teway
/ ." N ‘| { \‘ "i" |' Il nepenthes Q 3
/ / 1‘\ [\"VA "‘ rl,‘ ; 1 7 Malware
Pt
’l HIRY RWAM H I M3 simulator
77 N I T ,/ {F== N
| g N S \ [>
\ | - S~ = >
'~ 'L r ;
N e — Fig. 3. Global system
—_—— = — TPREROUTING figure
Fig. 2. Mechanism of redirection an antivirus software, tried to connect to the same channel.
s We observed C&C channels on TCP ports: 22, 1863, 3000,
figure

3211,

4545, 4747, 5190, 5500, 6667(5 times), 7000(7 times),
8080(twice), 8081, 8585, 8885, 10324, 19555, 21999,
40321 (twice), 51555 and 65520.

_ _ In [3], authors discovered that the IRC servers could
We conclude that this flow (IP1,pl) is part of a C&C |isten for connections on ports greater than 6667. We also
channel and we configure the firewall so that it let this flow noticed that they should also listen on ports lower than
access the Internet (flow 2). After communicating with 6667 and even less than 1024 (i.e. privileged ports). The
this C&C channel, let us assume that our malware startsconclusion is that IRC servers may be listening on any
sending SYN packets to a range of different IP addressesports. This result is important in order to calibrate our
on port p2. We then assume that this is a propagationexperiments to detect botnets.

attempt, and configure owynamic redirectiorsystem to One of the C&C channels obfuscated orders given to

make it redirect at least one of the scanned addresses téhe malware. We observed for example this kind of irc log:
one of our honeypots (M3). We then relaunch the malware

and observe the propagation simulation success (flow 3). re> hu_b. 59972. com 33_2 Zti SDoAy #wi shi

i rc>: =Ji ALxH3TzCGc+xLRj k65nRq03KD2f cDnt \
i rc>LeKyi rc>bh5x9DTzSyf dxeoa7kH an9qT8CS\
i rc>XkDnXr EbzP2XMIR5I 1bb8kvgPvGaguUt UUc 6\
i rx>cFnel FDpx T+9GnWOPPh6X3KOHVUB3d Xai RKKR\

This section is dedicated to the presentation of their c>O+w7BvNakyqCaXcl PW/Y2+hl H pDQt J

preliminary results we obtained from our experiments.
Thanks tonepent hes, we downloaded 46 malware bi-
naries with different md5 checksums. The analysis of the
binaries provided us some interesting results about the
C&C channel and the structure of the botnets.

USER <user 1>
Nl CK <ni ck1>

IV.Experimentation and results

This order resulted in:
« the download of a keylogger, and
« the scan of the local network, trying to exploit a flaw
on the Windows samba service.
Without executing the malware, this kind of order would
be difficult to understand.
We also observed, thanks to the simulation of a success-

A..C&C channel

All the collected malware that tried to make a con-
nection to a bot used a protocol similar to IRC as the
communication channel. We identified 32 different C&C

channels. We observed that some malwares with different

md5, and even identified as different kind of malwares by

ful break-in of an attack, that propagation successes are
reported on the C&C channel. Such an example follows.
After the bot opened a connection to its server and IRC
channel, the server returns a propagation order:

irc>$url _irc_server$ 332

i rc>Bi Tch| 76914 #bitch : nected to a first C&C channel, received the order to
i rc>+advscan MassAsn 50 5 0 upgrade itself:

I re>201. x.x. x -t i rc>: STA 332 Bot| 2153 #server# :
The bot then announced on the C&C channel theirc>.dl http://url/mal ware. exe>

beginning of the propagation attempt: irc> <mal ware2. exe> 1

i r c>PRI VMBG #bi tch : [SCAN : The first version of this malware had been detected by
i rc>Random Port Scan started on an up-to-date antivirus. But this antivirus was not able to
i rc>201. X. X. X: 445 with detect the new version of this malware. We had to wait for
irc>a delay of 5 seconds for 0 a new release of the antivirus for getting an alarm on this
i rc>ninutes using 50 threads. new malware form. When running the second version of

_ _ . the malware, we observed that it made a connection to the
We simulated the success of this propagation. Then thesame |RC server but using a different channel. The IRC

bot considered that the propagation was a success and thigerver sent the following attack order on the channel:
information was sent on the C&C channel:)
i rc>: STA 332 FRA| 230440991 #.to.:

rc>PRI VMBG #bitch : [TFTP]: irc> asc dcoml35 200 0 O -r -s
rc>File transfer started to | P:
rc>$@i mul at ed_vi cti nd ($ex_pat h3).
rc>PRI VMBG #bitch [TFTP]:

We can deduce from these experiments that the deep
analysis of the data exchanged on the C&C channel is
. . fundamental to understand the whole structure of a botnet.
rc> File transfered to I P: :
rc>$@i mul at ed_vi cti nB($ex_pat hs) . In order to destroy a .botnet, we must. not de_acnvate a

- - C&C channel when it is discovered. It is very important

These experiments showed that the attacker (the humario analyze the data exchanged on this channel, as the
that controls the botnet) can follow the propagation of mal war e2. exe of the above example. In this particular
the malware (he knows when one of his bots succeeds incase, this analysis allowed us to learn the existence of
breaking into a machine, because the attacking bot reportother channels. The best methodology to destroy a botnet
it, and because the attacked machine also announces on thie probably to infiltrate it and to be able to get a whole
channel when it joins the botnet). This result is important map of its structure.
and shows the relevance of our redirection mechanism.
We could not have understood these malware propagation/. Conclusion and Future Work
features without this mechanism.

This result also puts the emphasis on the fact that This paper proposes an experimental platform with all
using honeypots to infiltrate botnets presents the follgwin its components for simulating the behavior of malware.
limitation: as a honeypot cannot legally break into other This platform aims at providing a high interaction level
machines, the attacker can observe that this bot does nofor simulated malware but without sending out malicious
try to propagate itself and can deduce that this bot is atraffic to the Internet. It permits us to get information on
honeypot. Even if the honeypot lies by reporting a false C&C channel structure and on the general structure of
propagation success, the attacker can realize that this i$otnets.

a lie because the designated pseudo victim never tries t0 These encouraging results motivate us to improve this
join the botnet (these problems are described in detailsapproach towards three different directions:

in [4]). However, blackhats need to deal with the fact , First, run more extensive experiments: the risks re-
that IP addresses of corrupted computers can be dynamic, |ated to this kind of experiments forced us initially to
and that such computers are not always powered up and monitor their execution in real time. With the confi-
connected to the Internet. Therefore the issue to know dence we gained with this first use of the platform,

whether they use this teChnique or not is not obvious. The we are p|anning to run extensive malware simulations

correlation of results obtained by our system with other without watching at them continuously.

systems that do not redirect attacks, can be a way to obtain , Second, we plan to make flow identification auto-

this information. matic. This task is difficult. Existing solutions in IDS
are best effort and do not provide any guarantee on

B.Botnets structure 0day® attacks, or on known attacks but sent in ways

IDSes have not predicted.

Qur experiments highlighted that the botnets are not 1orqg| that exploits a vulnerability for which no patch has bee
static. We observed that one of the malware, when con-published.

« The third direction consists in improving the quality

of infiltration of our honeypots; the goal is to make (8] J ?{L Gﬁrman
them hardly detectable by hackers, and then make

them keep their capabilities of informing us about
botnets. We do think that establishing a network of

honeypots collaborating with each other would help [10] D

to improve their transparency to hackers. We are then
working on the (for the moment theoretical) design

Notes in Computer Sciencgages 51-68, Frankfurt am

2005,
ristoff. Botneéts. ?rBZn%rlgleetlng of the North American

rators GroypOctober
[9] Y lftevgﬁy Les duemgous deze ‘onomie souterraine

des codes malicieux : chevaux de troie, virus et malware.

VrusLlstco 2006.
én M.voelker, and S. Savage. Inferring inter-

net denlal of-service activity. IfProceedings of the 10th
USENIX Security Symposium, Washington, D.C, UB#
SENIX Associatio

of collaboration mechanisms inside such a honeypots[11] D Napier. IPTa |eS/2NetFI|ter — Linux’s next-generation

network, for which we evaluate the performances in

stateful packet filter.j-SYS-ADMIN 10(12):8, 10, 12, 14,

6,
terms of transparency for the hackers, as well as[12]]S Igacme &nalysns of |nternet relay chat usage by ddos

quality and quantity of produced information about
the botnets and commanders.

Some other improvements of our botnet analysis ap-
proach will also be investigated in a short future. However,
this botnet infiltration work finally aims at developing, at
the Internet scale, a global proactive protection system.
We expect that infiltrated honeypots would receive some
orders for launching attacks. It would then become easier
to block the related attacks, or even better, to block the
spreading of the attack orders in the botnet. In the short
term, this infiltration work will provide us with a list of
corrupted machines for which the risk of being involved
in a DoS attack is significantly high. This information
is interesting as it could help better managing security
policies. For instance, for an IDS, profile based attack
detection thresholds can legitimately be reinforced fer th
machines identified as corrupted. For them, the probability
that an anomaly on their outgoing traffic corresponds to
an attack (instead of a legitimate increase of traffic) is
significantly high.

References

[1] M. Akiyama, T. Kawamoto, M. Shimamura, T. Yokoyama,
and S. Yamaguchi. A proposal of metrics for botnet
detection based on its cooperative behavior.Warskshop

SAINT 2007 IEEE, 2006.
[2] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. C.

Freiling. The nepenthes platform: An efficient approach to
ollect malware. INRRAID, pages 165-184, 2006 .
[3] ES 80011%, Y ﬁahanfoén Bng B. McPherson. The zombie
roundup Understanding, detecting, and disrupting botnets.

I Sruti'’200 39-44, USENIX, 2005.
a r% ou ar?dpsg%unnlng am. Honeypot-aware advanced

botnet construction and maintenance.Pioceedings of the
2006 International Conference on Dependable Systems and

N D | JFL 1 2,2
[5] F ewgﬁh]sg,('IS ?20”" Wl%%grgklzs%otngg tracking:

Exploring a root-cause methodology to prevent distributed
denial-of-service attacks. Technical Report AIB-2005-07,

RWTH Aachen, 2005
[6] T. Holz. A's ort V(I)Slt to the bot zoo.IEEE Security &

o) M 767
7 Trﬁgfyang%zﬁ%%%ets A%omtamst approacfh for comparing

honeypots. InProceedings of the ‘Detection of Intrusions
and Malware and Vulnerability Assessment (DIMVA 2005)’
Conference, Vienna, 7.-8. July 2Q@®lume 3548 of_ecture

4] €

[13] ZSymantec

ombies. Mast%rsthess ArP
ymantec' i ernet securlty threat report,

September 2006. http://waww symant ec. coni

nt rise/threatreport/inde
[14] G fha{) Iand‘\/l Parashar. Coolperatf\(/e mgchanlsm against

ddos attacks. Ininternational Conference on Security
Management (SAM .05), Las Vegas, NV, USkhe Applied
Software System Laboratory, Department of Electrical and
Computer Engineering, Rutgers University, CSREA Press,
2005.

