
Shark: Spy Honeypot with Advanced Redirection Kit

Ion Alberdi Éric Alata Philippe Owezarski Vincent Nicomette Mohamed Kaâniche
LAAS-CNRS

7 avenue du Colonel Roche - 31077 Toulouse Cedex 4
{ialberdi,ealata,owe,nicomett,kaaniche}@laas.fr

Abstract

Botnets represent a big threat for the Quality of Internet
Services, as they are the source of many malicious activ-
ities (DoS attacks, Spam, secret violation, etc). Our work
focuses on trying to detect, observe and disable botnets
by infiltrating them. For this purpose, this study focuses
on discovering the behavior of malware which drives the
bots. The paper presents the design of an experimental
platform which takes advantage of the honeypot technology
for downloading malware, and especially, serves as an
infrastructure allowing the observation and the analysis of
the collected malware behaviors, which is the contribution
of this paper. For this purpose, we are designing SHARK,
a Spy Honeypot with Advanced Redirection Kit. The redi-
rection kit aims at coping with some liability constraints
which forbid one to send out malicious traffic which could
pollute or corrupt any other machines. This paper presents
first results on the gathered malware observation and
analysis, and some conclusions on botnet behaviors, thus
demonstrating the interest and pertinence of this platform.

keywords: honeypots, botnet, malware, worms.

I.. Introduction

Since the Internet is becoming a multi-services network
for different kinds of applications and media with differ-
ent requirements, Distributed Denial of Service Attacks
(DDoS) introduce a threat of significant importance. These
kinds of attacks are very frequent. The most famous
example of DDoS attack is 5Bcertainly the one launched
on October 17th 2002 against the 13 root DNS servers.
The attack managed to bring down 7 of them. A significant
part of Internet hosts were then unable to take advantage

of naming service for a long duration1. More generally,
[10] counted the occurrence of at least 12,000 Denial of
Service (DoS) attacks against 5,000 different hosts during
a three weeks period in 2001. According to statistics
reported in [13], from January to June 2006 an average
of 66,000 active bots launching 6,110 DoS attacks per day
was observerd. This study, as well as [5], also points out
the role of some machines (also called bots or zombies)
corrupted by blackhats in this new kind of threat. It appears
that some blackhats are controlling several thousands of
machines which can be used jointly for sending DDoS at-
tacks. Corrupting new machines is then of high importance
for blackhats to gain more power. If such activity is so
widespread, it is probably because botnet renting, for send-
ing spam or DDoS for instance, can be a very profitable
activity. [9] evaluated that botnet owners have made more
profit than the whole antivirus software industry in 2005.
In addition, corrupting a significant number of machines,
can be sometimes as feasible as corrupting a single one.
Nowadays, the uniformity of software binaries installed
on a large number of interconnected computers produces
a dramatic weakness. Indeed, a bug on such software that
can lead to arbitrary code execution, is exploitable on all
the instances of this software, and therefore, on all the
reachable computers on which this software is installed.

The threats that such botnets represent against the Qual-
ity of Internet Services have to be addressed and ideally
removed. Thus, protecting networks against DDoS attacks
is one of the strategic problems to be solved. Up to now,
usual protection approaches rely on the use of Intrusion
Detection Systems (IDS). The drawback with such IDS is
their postactive or reactive nature. They can work only
when attacks occur [14]. Complementary solutions for
protecting networks against botnets and DDoS attacks must
be as proactive as possible, i.e., annihilate these threats

1A similar attack took place on February 6th 2007. Fortunately, it was
not as successful.

as soon as possible. The ideal solution would consist in
developing software applications without exploitable bug,
or at least making people apply corrective patches fre-
quently. Nevertheless, past experiences demonstrated that
those considerations are not realistic. Because of current
Internet users habits that result in:

• widely using the same operating system and software
binaries,

• neglecting the process of applying security patches,
we do think it would be utopian to try to fight against
botnet creation. Our work then focuses on trying to detect,
observe and disable botnets by infiltrating them. We then
expect to find a way for disabling DDoS attacks before
they occur (and then propose a new proactive defense
approach). This paper presents our first work towards this
long term research objective.

For this purpose, we propose to use monitoring tech-
niques for observing and analyzing attacks, blackhats and
the spread of botnets. Possible monitoring techniques can
be classical network passive monitoring technologies, but
also, in the case of attacks, more specialized tools as
honeypots. In this context, three different techniques can
be distinguished for detecting botnets:

1) Observing the malicious traffic sent by bots (flood-
ings, spam, . . .) with the aim of detecting botnets.
Up to our knowledge, nobody applied this method
yet. This seems still to be an unexplored way.

2) Observing theCommand & Conquer Channel,
(C&C) which is the channel used by the blackhat to
control the machines he corrupted. Several projects
already applied this approach for the purpose of
detecting botnets [1], [8], [12]. Most of them analyze
Internet traffic and identify botnets by observing
non standard IRC commands, or by measuring the
reactivity of IRC clients (which helps to differentiate
humans from bots). However, these projects limit
their observations to a single kind of C&C channels,
i.e. unencrypted IRC. In addition, they assumed that
IRC traffic due to botnets is only generated on the
standard IRC port number, which is a significant lack
as described by [3] for example.

3) Capturing and analyzing the malware which corrupts
a machine and makes it a bot. Several proposals
have been made according to this approach. They
generally take advantage of low and high interaction
honeypots, jointly or not, depending on their objec-
tives [7]. For example, [3] proposes to install a high
interaction honeypot in a network, and protect this
network from a possible propagation by limiting the
output bandwidth and filtering connection attempts
to the LAN. This system fully simulates a bot
behavior. But it presents major drawbacks, the main
being its lack of protection against damages that

the infected honeypot could cause to the Internet.
Indeed, even if LAN protection is guaranteed and
high rate DoS attacks cannot be launched from
the honeypot, potential malware can still propagate
through the Internet from this honeypot. Another
methodology presented in [5] aims at behaving as a
bot in order to infiltrate a botnet. For this purpose, it
starts by downloading the botnet malware, analyzes
it and extracts information on the C&C channel.
Then it emulates the bot behavior on the channel2 to
gain information. It is of course less accurate than the
method described in [3] which proposes to interpret
malware commands. But on the other side, it allows
an automatic gathering of malware, and ensures not
to send out malicious traffic to the Internet.

Our study focuses on discovering the behavior of mal-
ware which drives the bots [6]. The paper presents the
design of an experimental platform which takes advantage
of the honeypot technology for downloading malware [2]
, as well, and this is the contribution of this paper, as
an infrastructure allowing the observation and the analysis
of the collected malware behaviors. For this purpose,
we introduce SHARK, a Spy Honeypot with Advanced
Redirection Kit. The redirection kit aims at coping with
some liability3 constraints, e.g., in France, that forbid
the honeypot owners to send out malicious traffic which
could pollute or corrupt any third-party machines4. As
it is law enforced, SHARK works in a restrictive and
controlled environment. It interacts with other machines
but must control the traffic sent out, to avoid being suit.
This limitation is mitigated in SHARK by the redirection
kit which proposes both static and dynamic redirection
principles. Section II presents the design of this platform
especially detailing the safe simulation environment, and
the redirection mechanisms. Section III presents its imple-
mentation. The section IV focuses on preliminary results
on the gathered malware observation and analysis, and
some conclusions on botnet behaviors, thus demonstrating
the interest and pertinence of this platform. Finally, section
V concludes the paper by describing some limits of the
system which will be improved in future work. It also
depicts, using few examples, how these results could be
exploited for the design of a global proactive protection
system for the Internet.

2Without simulating its other actions (like propagation attempts). In
other words, it only offers a partial level of interaction.

3As far as we know, the law seems to be very similar in most of the
countries: USA, All western Europe countries, Japan, etc.

4The owner of a machine connected to the Internet is responsible of
the traffic his machine generates... even the one that is sent out because
of the blackhat (who has some control on the machine) requests.

II.. Design

Our methodology aims at providing a particular runtime
environment that allows the behavior of an attack to
be simulated. That simulation environment must prevent
the malware from sending out malicious packets to the
Internet. This restriction could be discussed: why should
we prevent the malware from sending out packets to the
Internet if the observation of these packets is fundamental
to understand the structure and behavior of botnets ? The
French law is clear: this traffic is illegal, and therefore
this work aims at obtaining information on botnets without
making illegal actions.

Our environment has to face two main issues:
• How to obtain malware?
• How to design and implement such a restrictive

runtime environment?

A.. How to download malware?

One solution for collecting malware consists in volun-
tarily letting it infect a computer on which a honeypot is
running. Two types of malware propagation techniques can
be distinguished according to the kind of vulnerabilities
they exploit:

• Client side vulnerabilities: they target client soft-
ware and require a human interaction (such as click-
ing on an infected document attached to an email for
example).

• Server side vulnerabilities: they target server soft-
ware and do not require any human interaction.

nepenthes [2] is a tool for collecting malware that
exploits server side vulnerabilities. We have decided to first
analyze malware collected with this software.

B.. How to build a restrictive and controlled
runtime environment?

The second step of our methodology consists in run-
ning collected malware for observing and understanding
their behavior. To keep control on such possible harmful
executions, some parts of malware interactions have to be
simulated. The quality of simulations depends on the level
of interaction provided by the environment. By developing
their own IRC client to observe a botnet, [5] built a simu-
lation environment with a lower interaction level than the
one that is expected if the malware is executed without any
control. Nevertheless, even if executing malware without
any control provides the best possible level of interaction
for observing them, such actions can also generate illegal
malicious traffic. We then built our runtime environment
with the aim of making it as interactive as possible with
respect to all legal constraints.

The execution of such malware may provoke non neg-
ligible modifications on the operating system and applica-
tions installed. Those modifications could have an impact
on the execution of any software running afterwards,
and especially some other malware. Then we decided to
reinitialize the whole operating system once a malware has
been executed.

As already explained, our runtime environment is built
with a full control on all communications initiated from
the malware. Communications on the C&C channel do
not provoke any particular degradation on any information
system and thus do not present any risk from our point
of view. We therefore decided to let the malware talk
through the real C&C channel when it is available, or try to
simulate it otherwise5. On the other hand, malicious traf-
fic, corresponding to DDOS or spam, represents obvious
threats and should therefore be simulated.

The last issue to cope with concerns the identification of
the different flows initiated from the malware. We adopted
an iterative approach by redirecting the information flows
initiated by the malware towards a local machine under
our control. This machine simulates the service requested
by these flows. These information flows are analyzed in
order to decide whether they can be sent to the Internet,
redirected or blocked during the next execution of the
malware.

1) Static redirection:The static redirection consists in a
set of rules controlling the redirection of some connections,
that cannot be changed during the same malware execution.
One of the most important statically redirected flows are
DNS flows. We chose to use our own DNS server and
redirect all the DNS requests from the malware to this
server. Thanks to that configuration, we can associate to
this DNS name the IP address of our choice:

• the real IP address associated to this DNS name, or
• a “fake” IP address, for example a computer in our

LAN.
To sum up, our system redirects traffic, first using the DNS
protocol. The other redirection techniques arise at levels3
and 4. For example, all tcp flows towards port 6667 are
redirected to the IP ip1, port p1.

Thanks to these redirections, we can analyze the in-
teractions between the malware and computers it tries to
connect to. It then helps us to define the execution flow
policy for this malware future executions.

But static redirection presents serious drawbacks when
considering malware propagation attempts. Malware usu-
ally tries to propagate by scanning Internet computers.
Scanned addresses cannot be predicted as they can be
randomly chosen, or dynamically designated by the botnet
administrator. Therefore with static redirections, we can

5For example, when the url is outdated or the server unreachable. . . in
the case of an IRC C&C channel.

only enforce redirections based on level 4 port parameter.
Then, all the scanning flows can be redirected either to one
computer, which would be unrealistic, or to none, which
represents the lowest possible interaction level, and there-
fore provides little information on scanning impact. We
therefore implemented a dynamic redirection technique.

2) Dynamic redirection:We have designed and imple-
mented a selective mechanism which allows connections
from the honeypot towards Internet to be automatically and
dynamically redirected. The goal is to make the attacker
have the illusion that he can connect from the honeypot to
the Internet whereas, in reality, the connections are simply
redirected towards another honeypot. The originality of our
method is the dynamicity of this redirection mechanism.

C o n n e c t i o nD r o p p e d c o n n e c t i o nR e d i r e c t e d c o n n e c t i o nS i m u l a t e d c o n n e c t i o n

a
b c d

e f g
1 2 3 4

5
5

Fig. 1. Example of redirection
figure

Let us take the example presented in Figure 1. An
attacker, from Internet hosta, breaks into honeypotb
(connection 1). From this honeypot, the attacker then
tries to break into Internet hoste thanks to connection
2. This connection is blocked by our mechanism. The
attacker then tries another connection3 towards Internet
host f . This connection is accepted and automatically
redirected towards honeypotc. The attacker has the illusion
that his connection tof has succeeded whereas it has
been redirected to another honeypot. The attacker finally
initiates another connection (5) to Internet hostg from host
f . This connection is also accepted and redirected towards
honeypotd.

This mechanism is interesting because it allows the
activity of the attacker to be observed on the different
hosts that he is supposed to control. In general, a honeypot
allows the activity of the attacker to be observed at only

one side of the connection. The other connection end is the
machine that interacts with the honeypot. For all redirected
connections, we can observe an attacker at both connection
ends. On the previous example, the attacker is connected
from hostb to hostc and it is possible to observe him on
both hostsb andc.

Of course, this mechanism must be as reliable as
possible so that we can collect data really representative
of the behavior of the attackers. Thus, the implementation
of this mechanism must have the following properties:

• it must be adaptable according to the needs of the
administrator.

• it must be hidden as much as possible in such a way
that the attacker cannot suspect anything strange.

• it must not increase in a visible way the latency of
the communications.

III.. Implementation

To build our environment, we needed to implement
first the malware environment execution, and the static
redirection mechanism, and then the dynamic redirection.

A.. Malware environment and static redirec-
tion

The large majority of interconnected computers use the
Windows XP operating system. We therefore chose to use
it to create the execution environment. In order to reinitial-
ize our operating system after each malware execution, we
chose to use the VmWare x86 architecture virtualization
software. This software makes possible to take a snapshot
of the state of the virtualized uninfected computer and
go back to this state when necessary. Therefore, before
executing a malware, we only need to take a snapshot
of the uninfected operating system and go back to this
snapshot before launching another execution.

We chose the GNU/Linux operating system as host
system, essentially because of its firewallnetfilter and
because the VmWare software supports it.

The static redirection has been implemented thanks to
the Destination Network Address Translation functionality
offered by the GNU/Linux firewallnetfilter. The selected
DNS server isbind9. nc is used to capture the first payloads
sent by a malware after a tcp handshake .

B.. Dynamic redirection

The dynamic redirection mechanism has been imple-
mented in the Gnu/Linux operating system. Nevertheless,
it has been designed in such a way that it can be easily
adapted to other systems.

As illustrated in figure 2 the mechanism includes three
components:

• theredirection module (inside the kernel) ex-
tracts packets.

• thedialog handler decides whether the extracted
packets must be redirected or not.

• thedialog tracker is a link between the redirec-
tion module and thedialog handler.

The design of the dialog handler and the
dialog tracker is simple and does not reveal any
particular difficulty. Hence, this paragraph only focuses on
the module implemented in the kernel.

The redirection module must extract packets in such a
way that they can be redirected or blocked. To do so, our
module interacts with thenetfilter component of the
kernel [11]. This component is a firewall which includes
five chains. Each chain is used to intercept and possibly
modify packets at different stages on their way through
the IP stack (INPUT, OUTPUT, FORWARD, PREROUTING
andPOSTROUTING). A set of particular functions named
hooks is associated to each chain. Each hook has a
particular role and processes the packets that pass through
the chain. For example, the hookconntrack updates
the state-machine of the connection corresponding to the
processed packet. The hooks associated to a chain are
ordered by priority. Hence, in a chain, the hook with the
highest priority processes packets before all others and the
hook with the lowest priority processes packets after all
others.

In order to implement our redirection mechanism, we
have developed two hooks and inserted them between the
hookconntrack and the hooknat dst (which changes
the destination address of a packet), in thePREROUTING
chain. Our first hook is in charge of extracting packets
and sending them to thedialog tracker in user space,
in order to decide whether they have to be redirected or
not, whereas our second hook is in charge of tagging the
corresponding connections as “redirected” if the decision
to redirect them has been taken. We do not systematically
redirect all the connections initiated from the honeypot to
Internet. Most of them are blocked and only a few of them
are redirected.

In fact, thanks to the hookconntrack of netfilter
(which associates a state-machine per pending connection),
the redirection of a whole connection only requires the
redirection of the first packet of this connection (the
other packets are automatically processed as the first one).
Thus, for each connection, our first hook only extracts
the first packet and sends it to thedialog tracker6.
Then, thedialog tracker forwards the packet to the

6We can recognize the first packet because the hookconntrack
which is just before our first hook tags the first packet of eachconnection
asNEW.

dialog handler, which decides if this packet has to
be redirected or blocked. This decision may be evaluated
according to different rules such as for example “a connec-
tion upon 10 or 100 is redirected, the others are blocked”7.
When the decision is taken, thedialog tracker in-
forms the kernel module through anetlink socket
that the corresponding connection has to be tagged as
“redirected” and the packet is re-injected into the next
hook of the chain, which is our second hook. This second
hook is simply in charge of tagging the corresponding
connection as “redirected”. The packet is then re-injected
in the list of hooks of the corresponding chain. One of
them is the hooknat dst which indeed redirects packets
of connections tagged as “redirected”, by modifying the
destination address of the packet (the destination address
is changed to the address of one of our honeypots). So that
this modification is correctly made, thenat dst hook
must be configured. This configuration is made through
a rule inserted thanks to theiptables command. For
example, the following rule configures this hook to redirect
to the machine 192.168.254.3 all packets of a connection
tagged as “redirected” with the tag0x03FEA8C0:

iptables -t nat -A PREROUTING \
-m connmark --mark 0x03FEA8C0 -j \
DNAT --to-destination 192.168.254.3

There must be as manyiptables rules as possible
redirections, and as many redirections as different tags. In
this way, a tagged packet of a connection is redirected
according to the tag.

The mechanism presented in this section is summarized
in the figure 2. This figure also presents the progress of the
first packet of a new connection through our mechanism.

C.. Deployed experimental set-up

The global system is depicted in figure 3. Let’s illustrate
this system by describing a possible execution scenario.
First, all outgoing flows are blocked, except DNS requests
that are redirected to our server. We launch the malware
execution (M1) and observe that a DNS request is sent
to get the IP address of DNSName1,IP18. Let us assume
DNSName1 exists9. Once the malware gets the IP1 address
it sends a TCP SYN packet to the port p1 of IP1. We then
configure thestatic redirectionof the flow (flow 1 of figure
3) and relaunch the malware. Our computer (M2) will
handshake the malware and receive first packets containing
payloads with:

7Definition of this decision process is part of future work.
8All flows generated by the malware are observed by a wireshark

(http://www.wireshark.org) network sniffer.
9If DNSName1 is outdated we change the configuration of our DNS

server so that he claims one of our computers to be associated tothis
url, and relaunch the malware.

P R E R O U T I N G
c o n n t r a c k n a tr e d i r e c t i o nm o d u l e

d i a l o g _ t r a c k e r l i b n e t fi l t e r _ c o n n t r a c k
d i a l o g _ h a n d l e r d i a l o g _ h a n d l e r

U s e r 8 s p a c eK e r n e l 8 s p a c el i b n e t fi l t e r _ q u e u e
d i a l o g _ h a n d l e r

Fig. 2. Mechanism of redirection
figure

USER <user1>
NICK <nick1>

We conclude that this flow (IP1,p1) is part of a C&C
channel and we configure the firewall so that it let this flow
access the Internet (flow 2). After communicating with
this C&C channel, let us assume that our malware starts
sending SYN packets to a range of different IP addresses
on port p2. We then assume that this is a propagation
attempt, and configure ourdynamic redirectionsystem to
make it redirect at least one of the scanned addresses to
one of our honeypots (M3). We then relaunch the malware
and observe the propagation simulation success (flow 3).

IV.. Experimentation and results

This section is dedicated to the presentation of the
preliminary results we obtained from our experiments.
Thanks tonepenthes, we downloaded 46 malware bi-
naries with different md5 checksums. The analysis of the
binaries provided us some interesting results about the
C&C channel and the structure of the botnets.

A.. C&C channel

All the collected malware that tried to make a con-
nection to a bot used a protocol similar to IRC as the
communication channel. We identified 32 different C&C
channels. We observed that some malwares with different
md5, and even identified as different kind of malwares by

Fig. 3. Global system
figure

an antivirus software, tried to connect to the same channel.
We observed C&C channels on TCP ports: 22, 1863, 3000,
3211,
4545, 4747, 5190, 5500, 6667(5 times), 7000(7 times),
8080(twice), 8081, 8585, 8885, 10324, 19555, 21999,
40321(twice), 51555 and 65520.

In [3], authors discovered that the IRC servers could
listen for connections on ports greater than 6667. We also
noticed that they should also listen on ports lower than
6667 and even less than 1024 (i.e. privileged ports). The
conclusion is that IRC servers may be listening on any
ports. This result is important in order to calibrate our
experiments to detect botnets.

One of the C&C channels obfuscated orders given to
the malware. We observed for example this kind of irc log:

irc>:hub.59972.com 332 ZtiSDgAy #wish\
irc>:=JiALxH3TzGc+xLRjk65nRq03KD2fcDnt\
irc>LeKyirc>b5x9DTzSyfdxeoa7kH/an9qT8CS\
irc>XkDnXrEbzP2XMJR5l1bb8kvgPvGwquUtUUc6\
irx>cFmzIFDpxT+9GwOPPh6X3KOHVU63dXaiRKKR\
irc>O+w7BvNakyqCaXcIPWvY2+hlHIpDOtJ

This order resulted in:
• the download of a keylogger, and
• the scan of the local network, trying to exploit a flaw

on the Windows samba service.
Without executing the malware, this kind of order would
be difficult to understand.

We also observed, thanks to the simulation of a success-
ful break-in of an attack, that propagation successes are
reported on the C&C channel. Such an example follows.
After the bot opened a connection to its server and IRC
channel, the server returns a propagation order:

irc>:url_irc_server 332

irc>BiTch|76914 #bitch :
irc>+advscan MassAsn 50 5 0
irc>201.x.x.x -r

The bot then announced on the C&C channel the
beginning of the propagation attempt:

irc>PRIVMSG #bitch :[SCAN]:
irc>Random Port Scan started on
irc>201.x.x.x:445 with
irc>a delay of 5 seconds for 0
irc>minutes using 50 threads.

We simulated the success of this propagation. Then the
bot considered that the propagation was a success and this
information was sent on the C&C channel:

irc>PRIVMSG #bitch :[TFTP]:
irc>File transfer started to IP:
irc>$@simulated_victim$ (ex_path).
irc>PRIVMSG #bitch :[TFTP]:
irc> File transfered to IP:
irc>$@simulated_victim$(ex_path).

These experiments showed that the attacker (the human
that controls the botnet) can follow the propagation of
the malware (he knows when one of his bots succeeds in
breaking into a machine, because the attacking bot reports
it, and because the attacked machine also announces on the
channel when it joins the botnet). This result is important
and shows the relevance of our redirection mechanism.
We could not have understood these malware propagation
features without this mechanism.

This result also puts the emphasis on the fact that
using honeypots to infiltrate botnets presents the following
limitation: as a honeypot cannot legally break into other
machines, the attacker can observe that this bot does not
try to propagate itself and can deduce that this bot is a
honeypot. Even if the honeypot lies by reporting a false
propagation success, the attacker can realize that this is
a lie because the designated pseudo victim never tries to
join the botnet (these problems are described in details
in [4]). However, blackhats need to deal with the fact
that IP addresses of corrupted computers can be dynamic,
and that such computers are not always powered up and
connected to the Internet. Therefore the issue to know
whether they use this technique or not is not obvious. The
correlation of results obtained by our system with other
systems that do not redirect attacks, can be a way to obtain
this information.

B.. Botnets structure

Our experiments highlighted that the botnets are not
static. We observed that one of the malware, when con-

nected to a first C&C channel, received the order to
upgrade itself:

irc>:STA 332 Bot|2153 #server# :
irc>.dl http://url/malware.exe>
irc> <malware2.exe> 1

The first version of this malware had been detected by
an up-to-date antivirus. But this antivirus was not able to
detect the new version of this malware. We had to wait for
a new release of the antivirus for getting an alarm on this
new malware form. When running the second version of
the malware, we observed that it made a connection to the
same IRC server but using a different channel. The IRC
server sent the following attack order on the channel:

irc>:STA 332 FRA|230440991 #.to.:
irc>.asc dcom135 200 0 0 -r -s

We can deduce from these experiments that the deep
analysis of the data exchanged on the C&C channel is
fundamental to understand the whole structure of a botnet.
In order to destroy a botnet, we must not deactivate a
C&C channel when it is discovered. It is very important
to analyze the data exchanged on this channel, as the
malware2.exe of the above example. In this particular
case, this analysis allowed us to learn the existence of
other channels. The best methodology to destroy a botnet
is probably to infiltrate it and to be able to get a whole
map of its structure.

V.. Conclusion and Future Work

This paper proposes an experimental platform with all
its components for simulating the behavior of malware.
This platform aims at providing a high interaction level
for simulated malware but without sending out malicious
traffic to the Internet. It permits us to get information on
C&C channel structure and on the general structure of
botnets.

These encouraging results motivate us to improve this
approach towards three different directions:

• First, run more extensive experiments: the risks re-
lated to this kind of experiments forced us initially to
monitor their execution in real time. With the confi-
dence we gained with this first use of the platform,
we are planning to run extensive malware simulations
without watching at them continuously.

• Second, we plan to make flow identification auto-
matic. This task is difficult. Existing solutions in IDS
are best effort and do not provide any guarantee on
0day10 attacks, or on known attacks but sent in ways
IDSes have not predicted.

10Tool that exploits a vulnerability for which no patch has been
published.

• The third direction consists in improving the quality
of infiltration of our honeypots; the goal is to make
them hardly detectable by hackers, and then make
them keep their capabilities of informing us about
botnets. We do think that establishing a network of
honeypots collaborating with each other would help
to improve their transparency to hackers. We are then
working on the (for the moment theoretical) design
of collaboration mechanisms inside such a honeypots
network, for which we evaluate the performances in
terms of transparency for the hackers, as well as
quality and quantity of produced information about
the botnets and commanders.

Some other improvements of our botnet analysis ap-
proach will also be investigated in a short future. However,
this botnet infiltration work finally aims at developing, at
the Internet scale, a global proactive protection system.
We expect that infiltrated honeypots would receive some
orders for launching attacks. It would then become easier
to block the related attacks, or even better, to block the
spreading of the attack orders in the botnet. In the short
term, this infiltration work will provide us with a list of
corrupted machines for which the risk of being involved
in a DoS attack is significantly high. This information
is interesting as it could help better managing security
policies. For instance, for an IDS, profile based attack
detection thresholds can legitimately be reinforced for the
machines identified as corrupted. For them, the probability
that an anomaly on their outgoing traffic corresponds to
an attack (instead of a legitimate increase of traffic) is
significantly high.

References

[1] M. Akiyama, T. Kawamoto, M. Shimamura, T. Yokoyama,
and S. Yamaguchi. A proposal of metrics for botnet
detection based on its cooperative behavior. InWorskshop
SAINT 2007. IEEE, 2006.

[2] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. C.
Freiling. The nepenthes platform: An efficient approach to
collect malware. InRAID, pages 165–184, 2006.

[3] E. Cooke, F. Jahanian, and D. McPherson. The zombie
roundup: Understanding, detecting, and disrupting botnets.
In Sruti’2005, pages 39–44. USENIX, 2005.

[4] C. C.Zou and R. Cunningham. Honeypot-aware advanced
botnet construction and maintenance. InProceedings of the
2006 International Conference on Dependable Systems and
Networks (DSN’06), Orlando,FL 32816-2362, 2006.

[5] F. Freiling, T. Holz, and G. Wicherski. Botnet tracking:
Exploring a root-cause methodology to prevent distributed
denial-of-service attacks. Technical Report AIB-2005-07,
RWTH Aachen, 2005.

[6] T. Holz. A short visit to the bot zoo.IEEE Security &
Privacy Magazine, 3:76–79, May-June 2005.

[7] T. Holz and F. Pouget. A pointillist approach for comparing
honeypots. InProceedings of the ‘Detection of Intrusions
and Malware and Vulnerability Assessment (DIMVA 2005)’
Conference, Vienna, 7.-8. July 2005, volume 3548 ofLecture

Notes in Computer Science, pages 51–68, Frankfurt am
Main, Germany, 2005. Spriger.

[8] J. Kristoff. Botnets. In32nd Meeting of the North American
Network Operators Group, October 2004.

[9] Y. Mashevsky. Les dessous de l’économie souterraine
des codes malicieux : chevaux de troie, virus et malware.
VirusList.com, 2006.

[10] D. More, G. M.voelker, and S. Savage. Inferring inter-
net denial-of-service activity. InProceedings of the 10th
USENIX Security Symposium, Washington, D.C, USA. The
USENIX Association, 2001.

[11] D. Napier. IPTables/NetFilter – Linux’s next-generation
stateful packet filter. j-SYS-ADMIN, 10(12):8, 10, 12, 14,
16, Dec. 2001.

[12] S. Racine. Analysis of internet relay chat usage by ddos
zombies. Master’s thesis, April 2004.

[13] Symantec. Symantec internet security threat report,
September 2006. http://www.symantec.com/
enterprise/threatreport/index.jsp.

[14] G. Zhang and M. Parashar. Cooperative mechanism against
ddos attacks. InInternational Conference on Security
Management (SAM .05), Las Vegas, NV, USA. The Applied
Software System Laboratory, Department of Electrical and
Computer Engineering, Rutgers University, CSREA Press,
2005.

